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We present the first measurement of polarization and CP–violating asymmetries in a B0
s decay

into two light vector mesons, B0
s → φφ, and an improved determination of its branching ratio

using 295 decays reconstructed in a data sample corresponding to 2.9 fb−1 of integrated luminosity
collected by the CDF experiment at the Fermilab Tevatron collider. The fraction of longitudinal
polarization is determined to be fL = 0.348 ± 0.041(stat) ± 0.021(syst), and the branching ratio
B(B0

s→ φφ) = [2.32 ± 0.18(stat) ± 0.82(syst)] × 10−5. Asymmetries of decay angle distributions
sensitive to CP violation are measured to be Au = −0.007 ± 0.064(stat) ± 0.018(syst) and Av =
−0.120± 0.064(stat)± 0.016(syst).
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Several charmless B0
s decays were observed at the

Tevatron in Run II [1, 2], but a detailed investigation
of decay properties and of CP violation in these decays
is still lacking. The B0

s→ φφ process is mediated by a
one–loop flavor–changing neutral current, the b→s pen-
guin, and belongs to the class of decays where the final
state consists of a pair of light spin–1 mesons (V). Three
independent amplitudes govern B→ V V decays, corre-
sponding to the polarizations of the final–state vector
mesons: longitudinal polarization, and transverse polar-
ization with spins parallel or perpendicular to each other.
The first two states are CP–even, while the last one is
CP–odd. Polarization amplitudes can be measured an-
alyzing angular distributions of final–state particles. In-
terference between the CP–even and CP–odd amplitudes
can generate asymmetries in angular distributions, the
triple product (TP) asymmetries, which may signal un-
expected CP violation due to physics beyond the stan-
dard model (SM).

The V–A structure of charged weak currents leads
to the expectation of a dominant longitudinal polariza-
tion [3, 4]. Approximately equal longitudinal and trans-
verse polarizations have been measured instead in b→ s
penguin–dominated B0 and B+ decay modes [5]. This is
explained in the SM by including either non–factorizable
penguin–annihilation effects [6] or final state interac-
tions [7]. Recent theoretical predictions [3, 4] indicate
a longitudinal fraction fL in the 40–70 % range, when
phenomenological parameters are adjusted to accommo-
date present experimental data. Explanations involving
new physics (NP) in the b→s penguin process have also
been proposed [8]. Additional experimental information
in B0

s penguin–dominated decays, such as B0
s→φφ, may

help distinguishing the various solutions [9], and can be
used to derive upper limits for the mixing–induced CP
asymmetries [10].

Triple product asymmetries are odd under time-
reversal (T ), and can be generated either by final–state
interactions or CP violation. In flavor–untagged samples,
where the initial B flavor is not identified, TP asymme-
tries can be shown to signify genuine CP violation [11].
In this respect they are very sensitive to the presence of
NP in the decay since they do not require a strong–phase
difference between NP and SM amplitudes, as opposed
to direct CP asymmetries [12]. The TP asymmetry is

defined as ATP = Γ(TP>0)−Γ(TP<0)
Γ(TP>0)+Γ(TP<0) , where Γ is the decay

width for the given process. In B0
s→φφ decays two TP

asymmetries can be studied, corresponding to the two in-
terference terms between amplitudes with different CP .
These asymmetries are predicted to vanish in the SM,
and an observation of a non–zero asymmetry would be
an unambigous sign of NP [12].

In this Letter we present the first measurement of
polarization amplitudes and of TP asymmetries in the
B0
s → φφ decay and an updated measurement of its

branching ratio using B0
s → J/ψφ decays reconstructed

in the same dataset as a normalization. Data from
an integrated luminosity of 2.9 fb−1 of pp̄ collisions at√
s = 1.96 TeV are analyzed.
The components of the CDF II detector relevant for

this analysis are briefly described below; a more complete
description can be found elsewhere [13]. We reconstruct
charged–particle trajectories (tracks) in the pseudorapid-
ity range |η| . 1 [14] using a silicon microstrip vertex
detector [15] and a central drift chamber [16], both im-
mersed in a 1.4 T solenoidal magnetic field. The detec-
tion of muons in the pseudorapidity range |η| . 0.6 is
provided by two sets of drift chambers located behind
the calorimeters (CMU) and behind additional steel ab-
sorbers (CMP), while the CMX detector covers the range
0.6 . |η| . 1.0 [17]. A sample enriched with heavy–flavor
particles is selected by the displaced–track trigger [18],
based on the Silicon Vertex Trigger (SVT) [19]. It pro-
vides a precise measurement of the track impact param-
eter (d0), defined as the distance of closest approach to
the beam axis in the transverse plane. Decays of heavy–
flavor particles are identified by requiring two tracks with
120µm ≤ d0 ≤ 1.0 mm and applying a requirement on
the two–dimensional decay length, Lxy > 200µm [20].

We reconstruct B0
s mesons by first forming φ→K+K−

and J/ψ→ µ+µ− candidate decays from opposite–sign
track pairs with mass within 15 and 100 MeV/c2 of the
known [21] φ and J/ψ mass, respectively. At least one
J/ψ track is required to match a segment reconstructed
in the muon detectors. We form B0

s→ φφ (B0
s→ J/ψφ)

candidates by fitting to a single vertex the φ φ (J/ψ φ)
candidate pairs. In the B0

s→J/ψφ case the fit constrains
the mass of the two muons to the J/ψ mass [21]. At
least one pair of tracks in the B0

s candidate must satisfy
the trigger requirements. Combinatorial background and
partially reconstructed decays are reduced by exploiting
the long lifetime and relatively hard pT spectrum of B0

s

mesons. We follow closely the selection adopted in [1], us-
ing the vertex fit χ2, the Lxy, the reconstructed B0

s and φ
meson impact parameters, and the minimum kaon trans-
verse momentum as discriminating variables. The se-
lection requirements are set by maximizing the quantity
S/
√

S + B, where the accepted number of signal events
S is derived from a Monte Carlo (MC) simulation [22]
of the CDF II detector and trigger, while the number of
background events B is modeled using data in mass side-
band regions: (5.02, 5.22) and (5.52, 5.72) GeV/c2. The
resulting mass distributions are shown in Fig. 1.

A binned maximum likelihood (ML) fit to the mB

distribution is performed to determine the B0
s yield for

both decay modes. The signal is parameterized by two
Gaussian functions with the same mean value, but dif-
ferent widths. The ratios between the two widths and
between the integrals of the two components are fixed
based on MC simulations. The combinatorial back-
ground has a smooth mass distribution near the signal
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FIG. 1: The invariant mass of the four kaons (left) and of
the J/ψ and two kaons (right) for B0

s→ φφ and B0
s→ J/ψφ

candidates, overlayed with fit projections and separate signal
and background components. The narrower signal peak for
the B0

s→ J/ψφ is due to the J/ψ mass constraint applied in
the reconstruction.

and is modeled with an exponential function. A reflec-
tion from B0 → φK∗(892)0 (B0 → J/ψK∗(892)0) with
misassigned kaon mass to final state pions contaminates
the B0

s → φφ (B0
s → J/ψφ) signal region. Parameteri-

zations and efficiencies determined from simulation are
used for these backgrounds. Their normalizations are
derived from the known [21] branching ratios, fragmen-
tation fraction ratio fs/fd, and the ratio of the detec-
tion efficiencies relative to signal ones. We estimate
(4.19 ± 0.93)% and (2.7 ± 1.0)% reflection background
under the B0

s → J/ψφ and B0
s → φφ signals, respec-

tively. Free parameters of the fit are the signal frac-
tion, the B0

s mass M , and width σ, together with the
exponential slope b0 defining the combinatorial back-
ground mass shape. We estimate the total number of
signal decays as Nφφ = 295 ± 20(stat) ± 12(syst) and
Nψφ = 1766 ± 48(stat) ± 41(syst), where the system-
atic uncertainty is estimated by varying signal and back-
ground models.

The B0
s→φφ decay rate is derived from the relation

B
(
B0
s→φφ

)
B (B0

s→J/ψφ)
=
Nφφ
Nψφ

B (J/ψ → µµ)

B (φ→ KK)

εψφ
εφφ

εµψφ ,

where εψφ/εφφ is the acceptance times efficiency ratio for
the two decays and εµψφ is the efficiency for identifying
at least one of the two muons. The efficiency ratio is
determined using a MC simulation of the CDF II detec-
tor and trigger, whose reliability in determining relative
trigger and reconstruction efficiencies has been verified
for several different decay modes also using data–driven
approaches [23]. We estimate εψφ/εφφ = 0.939 ± 0.099,
where the uncertainty includes systematic effects from
polarization uncertainties in the two decay modes (9%),
from the different trigger efficiencies for kaons and muons
(4%), and from the B0

s pT spectra (1%). We use in-
clusive J/ψ data to derive the single–muon identifica-
tion efficiency as a function of muon pT . It is deter-
mined separately in two pseudorapidity regions corre-

sponding, respectively, to the CMU/CMP and CMX de-
tectors, and is described by a turn-on function that de-
pends on a plateau, a slope, and a threshold parame-
ter. We use simulated B0

s → J/ψφ decays to calculate
εµψφ treating the efficiencies for the two muons as uncor-

related: εµψφ = (86.95 ± 0.44(stat) ± 0.75(syst))%. The
systematic uncertainty includes the uncertainty on the
background subtraction and effects of residual correla-
tion between the two muon efficiencies.

We measure B(B0
s → φφ)/B(B0

s → J/ψφ) = [1.78 ±
0.14(stat)± 0.20(syst)]× 10−2 and derive B(B0

s→φφ) =
[2.32±0.18(stat)±0.26(syst)±0.78(br)]×10−5, using the
known [21] B(B0

s→ J/ψφ), which contributes the domi-
nant uncertainty, labeled (br). This result is in agree-
ment and supersedes our previous measurement [1] with
a substantial reduction of its statistical uncertainty; it is
also consistent with recent theoretical calculations [3, 4].

We describe the angular distribution of the B0
s →

φφ decay products using the helicity variables ~ω =
(cosϑ1, cosϑ2, Φ), where ϑi is the angle between the di-
rection of the K+ from each φ and the direction op-
posite the B0

s in the vector meson rest frame, and Φ
is the angle between the two resonance decay planes
in the B0

s rest frame. The three independent complex
amplitudes are A0 for the longitudinal polarization and
A‖ (A⊥) for transverse polarization with spins paral-
lel (perpendicular) to each other. They are related by
|A0|2 + |A‖|2 + |A⊥|2 = 1. The differential decay rate is

expressed as d4Γ/(dtd~ω) ∝
∑6
i=1Ki(t)fi(~ω), where the

functions Ki(t) encode the B0
s time evolution including

mixing and depend on the polarization amplitudes, and
the fi(~ω) are functions of the helicity angles only [12].
To extract the polarization amplitudes we measure the
time-integrated angular distribution assuming no direct
CP violation and a negligible weak phase difference be-
tween B0

s mixing and B0
s→φφ decay as predicted in the

SM. The time–integrated differential decay rate depends
on the polarization amplitudes at t = 0 and on the light
and heavy B0

s mass–eigenstate lifetimes, τL and τH, as
follows:

d3Γ

d~ω
∝ τL

(
|A0|2f1(~ω) + |A‖|2f2(~ω)

+|A0||A‖| cos δ‖f5(~ω)
)

+ τH|A⊥|2f3(~ω), (1)

where δ‖ = arg(A?0A‖) and

f1(~ω) = 4 cos2 ϑ1 cos2 ϑ2,

f2(~ω) = sin2 ϑ1 sin2 ϑ2(1 + cos 2Φ),

f3(~ω) = sin2 ϑ1 sin2 ϑ2(1− cos 2Φ),

f5(~ω) =
√

2 sin 2ϑ1 sin 2ϑ2 cosΦ.

Two triple products are present in B → V V decays:
TP2 ≡ =(A?‖A⊥), and TP1 ≡ =(A?0A⊥). These factors

appear, respectively, in the decay rate terms K4(t) and
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K6(t) multiplied by the functions

f4(~ω) = −2 sin2 ϑ1 sin2 ϑ2 sin 2Φ,

f6(~ω) = −
√

2 sin 2ϑ1 sin 2ϑ2 sinΦ.

In flavor–untagged samples the TP terms, that vanish
in the absence of NP, are proportional to the so–called
true triple products, and provide two CP–violating ob-
servables, A1

TP and A2
TP [11]. We access A2

TP through
the observable u = sin 2Φ. We measure the u asymme-
try, Au, by integrating over cosϑ1,2 the untagged decay
rate and counting events with u > 0 (N+

u ) and u < 0
(N−u ). Similarly, A1

TP is accessed through an asymme-
try in sinΦ. We define the observable v as v = sinΦ
(v = − sinΦ) if cosϑ1 cosϑ2 ≥ 0 (cosϑ1 cosϑ2 < 0) and
measure its asymmetry Av by counting events with v>0
(N+

v ) and v<0 (N−v ). The asymmetries are defined as

Au(v) =
N+
u(v) −N

−
u(v)

N+
u(v) +N−u(v)

= Nu(v) ×[
=(A?‖(0)A⊥) + =(Ā?‖(0)Ā⊥)

]
= Nu(v)A

2(1)
TP ,(2)

where the two normalization factors are Nu = −2/π and
Nv = −

√
2/π. Both Au and Av are proportional to

CP–violating TP asymmetries, and are also sensitive to
mixing–induced TP when considering the decay–width
difference of the B0

s system.
We perform an unbinned ML fit to the reconstructed

mass of the B0
s candidates and the helicity angles in or-

der to measure the polarization amplitudes. The con-
tribution of each candidate to the likelihood is Li =
fsPs(mB i, ~ωi|~ξs) + (1 − fs)Pb(mB i, ~ωi|~ξb), where fs is
the signal fraction and Pj are the probability density
functions (PDFs) for the B0

s → φφ signal (j = s) and
background (j = b) components, which depend on the fit

parameters ~ξs and ~ξb, respectively. The effects of neglect-
ing the reflection background are included in the system-
atic uncertainties. Both the signal and the background
PDFs are the products of a mass component, described
earlier, and an angular one. The signal angular com-
ponent is given by Eq. 1 multiplied by an acceptance
factor. The acceptance is computed in bins of the he-
licity angles from simulated B0

s → φφ decays averaged
over all possible spin states of the decay products and
passed through detector simulation, full reconstruction,
and analysis cuts. We use an empirical parameterization
derived from the observed angular distributions in the
mass sidebands to model the background angular PDF:
the product of a flat distribution for the Φ angle and a
parabolic function for the other two, whose single pa-
rameter b1 is a fit parameter. We fix τL and τH to the
world average values [21]. There are eight free param-

eters in the fit: fs, ~ξs = (M,σ, |A0|2, |A‖|2, cos δ‖) and
~ξb = (b0, b1). The fit has been extensively tested using
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FIG. 2: Angular distribution for B0
s→φφ events with the fit

projection, signal, and background component superimposed.

simulated samples with a variety of input parameters and
shows unbiased estimates of parameters and their uncer-
tainties. We also perform the polarization measurement
using the sample of ≈1700 B0

s → J/ψφ candidates de-
scribed earlier. We find |A0|2 = 0.534 ± 0.019(stat) and
|A‖|2 = 0.220± 0.025(stat), in good agreement with cur-
rent measurements [24]. The results of the polarization
analysis for the B0

s→φφ sample are summarized in Ta-
ble I. In Fig. 2 we show the fit projections onto the helic-
ity angles. The dominant correlation of the fit parame-
ters is between |A0|2 and |A‖|2 (-0.447), the others being
much smaller. Several sources of systematic uncertainty

TABLE I: Summary of the B0
s→φφ measurements. The first

uncertainty quoted is statistical and the second is systematic.

Observable Result
B [2.32± 0.18± 0.82]× 10−5

|A0|2 0.348± 0.041± 0.021
|A‖|2 0.287± 0.043± 0.011
|A⊥|2 0.365± 0.044± 0.027
cos δ‖ −0.91+0.15

−0.13 ± 0.09
Au −0.007± 0.064± 0.018
Av −0.120± 0.064± 0.016

have been studied. We account for the neglected physics
backgrounds considering the B0→φK∗(892)0 decay and
two other possible contaminations: B0

s→φf0(980), with
f0→K+K−, and B0

s→φK+K− (non–resonant). The lat-
ter two contributions are normalized to the signal yield
in analogy with similar B0→ φX decays. We assume
up to 4.6% contamination from B0

s → φf0 and 0.9% of
B0
s → φK+K−, and determine a 1.5%(0.4%) shift in

the central value for |A0|2(|A‖|2) using simulated exper-
iments. Biases introduced by the time integration are
examined with MC simulation: they are created by the
dependence of the angular acceptance on ∆Γs and by
a non–uniform acceptance in the B0

s proper decay time
introduced by the displaced–track trigger. The assigned
systematic uncertainty (1%) is the full shift expected in
the central value, assuming a value for ∆Γs equal to the
world average plus one standard deviation [21]. We also
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consider the propagation of τL(H) uncertainties to the po-
larization amplitudes (1%). Other sources of minor sys-
tematic uncertainties are the modeling of the combina-
torial background (0.4%) and of the angular acceptance
(0.5%). The impact of CP–violating effects on the mea-
sured amplitudes is negligible.

The asymmetries Ai (i = u, v) are evaluated through
an unbinned ML fit to mB only, using the joint like-
lihood for the N+

i and N−i events with positive and
negative u(v). The same mB PDF parameterization
discussed above is used for samples with both u(v)
signs. We multiply the total likelihood by the binomial
f(N+

i , N
−
i |p), where the probability p of obtaining N+

i

and N−i events depends on the overall signal fraction fs,
the signal asymmetry Ai, and the background asymme-
try Aib: p = 1

2 [1 +Aifs+ (1−fs)Aib]. Mass and width for
the B0

s signal, as well as signal fraction, are consistent
with those obtained in the polarization analysis, while
background asymmetries are consistent with zero. The
measured B0

s→φφ asymmetries are reported in Table I.
The systematic uncertainty is evaluated using an alter-
nate background parameterization as in the polarization
analysis and by conservatively assigning maximal asym-
metry to the neglected physics background peaking in the
signal region. Using a large sample of simulated events,
we check that the detector acceptance and resolution in-
troduce a bias in the asymmetries smaller than 0.2%.

In summary, we measure for the first time the polar-
ization amplitudes and the triple product asymmetries
in the B0

s→φφ decay. We find a significantly suppressed
longitudinal fraction fL = |A0|2 = 0.348 ± 0.041(stat) ±
0.021(syst), smaller than in other b→s penguin B→V V
decays [5]. This result agrees well with predictions [3]
based on QCD factorization, but only marginally with
perturbative QCD ones [4], and hints at a large penguin
annihilation contribution [9]. The two measured asym-
metries are statistically consistent with the no CP viola-
tion hypothesis, although Av is 1.8σ different from zero.
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